Page 75 - MECÁNICA PARA INGENIERÍA Y SUS APLICACIONES – DINÁMICA Capítulo III
P. 75
MECÁNICA PARA INGENIERÍA Y SUS APLICACIONES – DINÁMICA Capítulo III
L X i L X i
0
f
0 M V T mV H S M V T mV H S (Velocidades constantes)
e e H S e H S M
M T m
t t e T m
Usando una de las propiedades de la aritmética, se tiene:
e H S M
e e H S M m (2)
T
(1) en (2) :
L M
e H S M m (3)
3).- Relaciones Cinemáticas, para el movimiento parabólico del sapo:
Si la distancia horizontal está dado por:
2
V sen 2
e 0 (4)
H S
g
(3)= (4):
2
V sen 2 L M V g L
0
g M m 0 m
1 sen 2
M
Remplazando valores:
V 0 . 4 16 m/seg
E3-38.- El sistema mostrado se deja en libertad a
partir del reposo en la posición dada en la figura. A
L
Sabiendo que no existe rozamiento entre el piso y
el carro, hallar el desplazamiento que experimente M P3-38
el carro de masa M, hasta el instante en que la
53º
barra AB uniforme y homogénea de longitud L B
haga un ángulo de 37° con la horizontal. La masa
de la barra homogénea es m; donde L = 100 cm.
Solución
1).- Estado inicial y final de la barra AB, en el carro:
UNASAM Autor: VÍCTOR MANUEL MENACHO LÓPEZ 331